SIGN AND MAGNITUDE OF ONE-BOND ¹⁹⁵Pt-¹³C COUPLING CONSTANTS IN Pt(II)-OLEFIN AND -CARBONYL COMPLEXES

Takao IWAYANAGI and Yasukazu SAITO*

The Institute of Industrial Science,
The University of Tokyo, Roppongi, Minato-ku, Tokyo 106

The positive sign of $^1\mathrm{J}(\mathrm{Pt-C})$ in $[\mathrm{Pt}(\mathrm{C_2H_4})\mathrm{Cl_3}]^-$ has been determined by the double resonance experiments, although both positive and negative signs are inferred for $\mathrm{Pt}(\Pi)$ -cyclooctadiene π -complexes. The small magnitude of $^1\mathrm{J}(\mathrm{Pt-C})$ in $[\mathrm{Pt}(\mathrm{C_2H_4})\mathrm{Cl_3}]^-$ compared with $[\mathrm{Pt}(\mathrm{C0})\mathrm{Cl_3}]^-$ has been interpreted in terms of the s orbital coefficients of Pt and C.

The nuclear spin-spin coupling constants in metal complexes, 1) especially their signs, 2) have attracted wide interest in recent years. As for the directly bonded $^{195}\text{Pt-}^{13}\text{C}$ coupling constants, no attempt at sign determination has hitherto been made, although both positive and negative signs are inferred for two kinds of π -bonded carbons (cis to Me and trans to Me) in the Pt(cod)MeX complexes (cod = cyclooctadiene). In the present study, the sign of $^1\text{J}(\text{Pt-C})$ for a Pt(Π)-ethylene π -complex has been obtained experimentally for the first time and the magnitude of $^1\text{J}(\text{Pt-C})$ for the ethylene complex has been compared with that of $^1\text{J}(\text{Pt-C})$ for a carbonyl complex quantum chemically within the framework of the Pople and Santry theory. 4)

The double resonance technique using a $^{13}\text{C-}\{^1\text{H}\}$ selective decoupling is useful for deciding the relative signs of $^n\text{J}(\text{M--C})$ and $^{n+1}\text{J}(\text{M--C-H})$. Since the value of $^2\text{J}(\text{Pt-C-H})$ including the sign is -60.6 Hz for trans-[Pt(C₂H₄)Cl₂(py)] (py = pyridine), obtained by pmr experiments in a nematic solvent, 6) the absolute sign of $^1\text{J}(\text{Pt-C})$: 167 Hz can be determined by this technique. The Zeise's anion, $[(n-\text{Bu})_4^N]^+[\text{Pt}(\text{C}_2^H)_4^N]^-(1^1\text{J}(\text{Pt-C}))$: 192 Hz, $^2\text{J}(\text{Pt-C-H})$: 64.3 Hz), was chosen here because of the advantage of spectrum simplicity. The magnitudes of $^1\text{J}(\text{Pt-C})$ and $^2\text{J}(\text{Pt-C-H})$ for a series of trans-[Pt(C₂H₄)Cl₂X] were reported previously. The magnitudes of $^1\text{J}(\text{Pt-C})$ and $^2\text{J}(\text{Pt-C-H})$ for a series of trans-[Pt(C₂H₄)Cl₂X] were reported previously.

Cmr spectra of $[(n-Bu)_4N]^+[Pt(C_2H_4)Cl_3]^-$ (CDCl_3 solution: $\delta(\underline{C}_2H_4)=67.2$ ppm from TMS, $^1J(Pt-C)=192$ Hz) and $[(n-Bu)_4N]^+[Pt(CO)Cl_3]^-$ (CDCl_3 solution: $\delta(\underline{CO})=151.4$ ppm from TMS, $^1J(Pt-C)=1757$ Hz) were measured on a JEOL PFT-100 spectrometer at 25.03 MHz. The relative sign of $^1J(Pt-C)$ and $^2J(Pt-C-H)$ for $[(n-Bu)_4N]^+[Pt(C_2H_4)Cl_3]^-$ in

 $CDC1_3$ solution was determined by the $^{13}C-\{^1H\}$ selective decoupling experiments.⁵⁾ The irradiating and observing frequencies were monitored by a TAKEDA RIKEN TR-550 frequency counter.

Irradiation of the low-field portion of the proton spectrum enhanced selectively the upfield platinum satellite of the ^{13}C resonance of the ethylene carbon of $[(\text{n-Bu})_4\text{N}]^+[\text{Pt}(\text{C}_2\text{H}_4)\text{Cl}_3]^-$ in CDCl_3 solution and *vice versa*, showing that the sign of $^1\text{J}(\text{Pt-C})$ was opposite to $^2\text{J}(\text{Pt-C-H})$ (negative). Therefore, the sign of $^1\text{J}(\text{Pt-C})$ with the magnitude of 192 Hz for the ethylene π -coordination in $[\text{Pt}(\text{C}_2\text{H}_4)\text{Cl}_3]^-$ is positive.

Table 1 summarizes the magnitudes of $^1\mathrm{J}(\mathrm{Pt-C})$ for various organoplatinum(II) complexes, trans-[PtLC1Q $_2$] (L = carbon-ligand). It is to be noted that the influence of the ligand X trans to the carbon-ligand L on $^1\mathrm{J}(\mathrm{Pt-C})$ has been reported to be quite large (trans infulence 1); L = C $_2\mathrm{H}_4$, 7) Me $^-$, 8) Ph $^-$, 9) and Co 10). Chlorine ion was chosen as the common trans ligand X for comparison. The dominance of the Fermi contact mechanism in the one-bond $^{195}\mathrm{Pt-}^{13}\mathrm{C}$ coupling was suggested by the linear relationship between $^1\mathrm{J}(\mathrm{Pt-C})$ and $^2\mathrm{J}(\mathrm{Pt-C-H})$ for a series of trans-[PtMeXQ $_2$] (Q = AsMe $_3$ or PMe $_2$ Ph) passing almost through the origin. 8) As shown in Table 1, the magnitudes of $^1\mathrm{J}(\mathrm{Pt-C})$ in Pt(II) σ complexes are generally much larger than that of ethylene π complex, and the more the s character of the carbon in coordination, the larger their magnitudes.

According to the theory of the Pople and Santry, 4) the coupling constant is given by Eq.1:

$$J(AB) = (16h\gamma_{A}\gamma_{B}\beta^{2}/9)[S_{A}(0)]^{2}[S_{B}(0)]^{2}\pi(AB) \qquad ...(1)$$

Table 1.	One-bond ¹⁹⁵ Pt- ¹³ C coupling constants in various organo-			
platinum(II) complexes, trans-[PtLC102].				

carbon-ligand L	hybridization of carbon ^{a)}	cis-ligand Q	¹ J(Pt-C)/Hz	Ref.
C ₂ H ₄	p	C1 ⁻	+192	This work
Me -	sp ³	AsMe ₃	643	8)
ме		PMe ₂ Ph	673	8)
Ph -	sp ²	AsMe ₃	858	9)
		AsPh ₃	1724	10)
СО	sp	C1	1757	This work
		PPh ₃	1788	10)

a) formal hybridization of carbon in coordination.

where γ is the gyromagnetic ratio and $[S(0)]^2$ is the s electron density at the nucleus. The s characters of the coupled atoms can be related to the mutual polarizability of the valence s orbitals of the atom A and B (π (AB)) (Eq.2):

$$\pi(AB) = 4 \sum_{i} \sum_{j} (\varepsilon_{i} - \varepsilon_{j})^{-1} C_{i} S_{A}^{C} i S_{B}^{C} j S_{A}^{C} j S_{B}$$
 ··· (2)

where ϵ is the orbital energy and C is the orbital coefficient.

In order to clarify the large difference in magnitude of $^1J(Pt-C)$ between the ethylene π complex and the carbonyl complex, the constituents of Eq.2, i.e., the s

orbital coefficients and their products, (Pt xC), in both the occupied and unoccupied orbitals in $[Pt(CO)Cl_3]$ and $[Pt(C_2H_4)$ - Cl_{z}] were calculated by the self-consistent charge extended Hückel method⁷⁾ and were depicted together with their orbital energies (Fig.1). An unoccpied mo with large coefficient product (negative), including the antibonding s-s interaction between the Pt and C atoms, is easily pointed out for both complexes. On the other hand, the coefficient patterns of the occupied orbitals in these complexes are in a marked contrast. An occupied mo with dominantly large s-s interaction is noted for [Pt(CO)Cl_z], reflecting the σ -type coordination

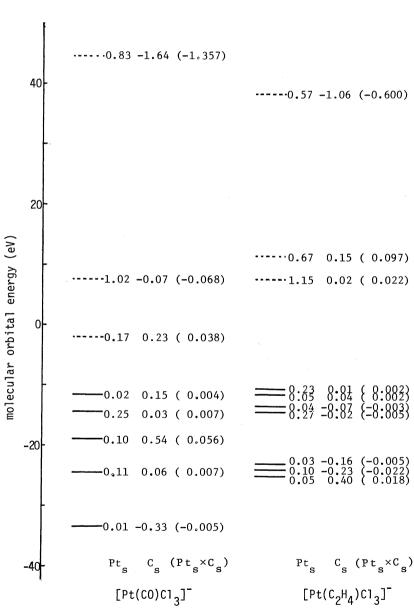


Fig.1. Valence s orbital coefficients of Pt(6s) and C(2s), together with their products, in the a_1 symmetry molecular orbitals of $[Pt(C0)Cl_3]^-$ and $[Pt(C_2H_4)Cl_3]^-$.

via the sp hybridized carbon, whereas no conspicuous orbital is found for $[Pt(C_2H_4)-Cl_3]$.

The small magnitude of ${}^1J(Pt-C)$ in $[Pt(C_2H_4)Cl_3]^-$ will be accounted for in terms of the small s-s interaction between the platinum and carbon atoms, since not only the back-donation but also the donation in coordination is composed mainly of the p_{π} electrons for ethylene. With respect to the value of (Pt_SxC_S) in the occupied orbitals, the pattern of non-dominant orbitals competing with each other is characteristic of the Zeise's anion as shown in Fig.1. It is therefore reasonable that the sign of ${}^1J(Pt-C)$ in the $Pt(\Pi)$ -olefin π -complex becomes either positive or negative depending on the kinds of olefins and trans-ligands. ${}^3)$

REFERENCES

- 1) T.G.Appleton, H.C.Clark, and L.E.Manzer, Coord. Chem. Rev., <u>10</u>, 335 (1973); B.E.Mann, Adv. Organometal. Chem., 12, 135 (1974).
- 2) P.L.Goggin, R.J.Goodfellow, and S.R.Haddock, J. Chem. Soc., Chem. Comm., 176 (1975); J.D.Kennedy and W.McFarlane, J. Organometal. Chem., 94, 7 (1975) and references cited therein.
- 3) M.H.Chisholm, H.C.Clark, L.E.Manzer, J.B.Stothers, and J.E.H.Ward, J. Amer. Chem. Soc., 97, 721 (1975).
- 4) J.A.Pople and D.P.Santry, Mol. Phys., 8, 1 (1964).
- 5) H.J.Jakobsen, T.Bundgard, and R.S.Hansen, Mol. Phys., 23, 197 (1972).
- 6) D.R.McMillin and R.S.Drago, Inorg. Chem., 13, 546 (1974).
- 7) T.Iwayanagi and Y.Saito, Inorg. Nucl. Chem. Lett., 11, 459 (1975).
- 8) M.H.Chisholm, H.C.Clark, L.E.Manzer, J.B.Stothers, and J.E.H.Ward, J. Amer. Chem. Soc., <u>95</u>, 8574 (1973).
- 9) H.C.Clark and J.E.H.Ward, J. Amer. Chem. Soc., <u>96</u>, 1741 (1974).
- 10) W.J.Cherwinski, F.G.Johnson, J.Lewis, and J.R.Norton, J. Chem. Soc., Dalton, 1156 (1975).
- 11) L.A.Fedrov, L.A.Stumbrevichute, A.K.Prokofyev, and E.I.Fedin, Dokl. Akad. Nauk SSSR, 209, 134 (1973).